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Image Segmentation Based on Fuzzy
Low-Rank Structural Clustering

Sensen Song ", Zhenhong Jia"”’, Jie Yang

Abstract—Fuzzy clustering is an essential algorithm in image
segmentation, and most of them are based on fuzzy c-mean al-
gorithms. However, it is sensitive to noise, center point selection,
cluster number, and distance metric. To address this problem, we
propose anew fuzzy clustering method based on low-rank represen-
tation (LRR) for image segmentation, which integrates low-rank
structure with fuzzy theory. First, we improve the morphologi-
cal reconstruction superpixel method based on edge detection by
introducing anisotropy to enhance the image edge. Thus, on the
one hand, the improved morphological reconstruction superpixel
method can improve its noise-resistance performance; on the other
hand, the complexity of the subsequent low-rank computation can
be reduced by enhancing the superpixels constructed by the edges.
Second, inspired by the fact that rank can represent correlation,
we propose the concept of fuzzy low-rank structure, which is not
dealing with data directly but with the relationship between data.
Specifically, we perform rank minimization on the constructed
membership matrix to obtain the optimal matrix. To obtain better
clustering results, we added the Frobenius norm of the fuzzy matrix
as a fuzzy regularization term in the LRR model to achieve global
convergence and obtain a membership matrix with a strong element
correlation. Finally, we obtain the final clustering results by cluster-
ing the processed membership matrix using a subspace clustering
with a low-rank structure constraint. Experiments performed on
artificial and real-world images show that the proposed method
is more effective and efficient than the current state-of-the-art
methods.

Index Terms—Fuzzy clustering, fuzzy low-rank structure, image
segmentation, low-rank representation (LRR), superpixel.

1. INTRODUCTION

MAGE segmentation is a well-known problem in computer
vision research, which refers to dividing an image into
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several disjoint regions based on features, such as grayscale,
color, spatial texture, and geometry [1]. These features show
consistency or similarity within the same region while display-
ing significant differences between regions. According to this
consensus, many kinds of algorithms for image segmentation
have been proposed, clustering algorithms [2], [3], [4], active
contour models [5], graph cuts [6], random walkers [7], region
merging [8], neural networks [9], etc. Among these algorithms,
clustering algorithms are employed to cluster the pixels in an
image into several regions and can achieve unsupervised image
segmentation without labels. Moreover, they have fewer pa-
rameters compared to other classes of algorithms. Furthermore,
clustering algorithms are robust and effective in dimensionality
reduction of high-dimensional data, so they have obvious advan-
tages in multichannel image segmentation. Therefore, clustering
algorithms have attracted much attention.

Among the clustering methods, the fuzzy c-mean (FCM)
algorithm is one of the most widely used fuzzy clustering
algorithms in image segmentation [10], [11]. Although it has
dramatically improved compared to previous fuzzy clustering
algorithms, it still has some problems, such as unsatisfactory
clustering of images affected by noise, outlier points, and other
artifacts. The most severe issue is that the results of FCM-based
image segmentation are highly dependent on the center point,
the number of clusters chosen, and the distance metric [4], [10],
[12]. As a result, some improvements have been developed.

Several further studies have been conducted to solve the
problems mentioned previously. The most straightforward strat-
egy is to merge the local spatial information into the objective
function to improve the segmentation effect. Inspired by this,
FCM algorithms with spatial constraints, such as FCM_S [13],
FCM_S1/S2 [14], and deviation-sparse fuzzy c-means with
neighbor information constraint (DSFCM) [15], was proposed.
However, they have high computational complexity and are not
robust to Gaussian noise. Krinidis and Chatzis [11] proposed a
fuzzy local information c-mean (FLICM) method to improve
the denoising ability. However, it has some shortcomings in
identifying class boundary pixels and preserving image details.
To overcome this drawback, Gong et al. [16] introduced a kernel
metric and a weighted fuzzy factor to enhance the robustness of
FLICM (KWFLICM) for identifying class boundary pixels and
preserving image details. Moreover, they also provided two other
schemes: a variant of the FLICM algorithm (RFLICM) [17] and
a fuzzy local similarity measure based on the pixel space attrac-
tion model (ADFLICM) [18]. The former uses local variable co-
efficients instead of fixed spatial distances to extract local texture
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information. At the same time, the latter adaptively determines
the weight factors of adjacent pixel effects to preserve the edges
and details of image regions. Following the concept of region-
level information, Wang et al. [19] proposed an improved FCM,
which combines adaptive local and region-level information
with median membership of Kullback—Leibler (KL) information
for noisy image segmentation (FALRCM). Also, they presented
an improved FCM with adaptive space and intensity constraints
and membership linking (FCM_SICM) [20] for noisy image
segmentation.

However, the added constraint terms and complex structure
easily increase the computational complexity while improving
denoising performance. To reduce the computational complex-
ity, Szilagyi et al. [21] enhanced FCM (EnFCM) by linearly
weighting sum each pixel’s local neighborhood mean grayness
with the original image and then clustering them based on
the grayness histogram of the summed image. Therefore, the
runtime of EnFCM is very short. Cai et al. [22] introduced a local
similarity measure that combines spatial and grayscale informa-
tion to form a nonlinear weighted summed image. Namely, the
clustering is performed based on summing the image grayscale
histograms. So it is a fast generalized FCM (FGFCM) algorithm
and its runtime, similar to EnFCM, is also very short. Lei
etal. [10] solved the computational complexity problem by mor-
phological reconstruction (MR) [35] and membership filtering,
which is a fast and robust FCM algorithm (FRFCM) due to its
removal of repeated distance calculations between pixels and
clustering centers within the neighborhood window. Inspired by
the superpixel technique [23], [24], [25], [26], [27], and EnFCM,
Lei et al. [28] proposed a fast FCM color image segmentation
algorithm (SFFCM) based on superpixels. It has two advantages.
One is that the proposed watershed transform-based multiscale
morphological gradient reconstruction (MMGR-WT) algorithm
can provide better superpixel results, which helps to improve the
final clustering results. The other is that the color histogram is
incorporated into the objective function of FCM, which speeds
up the implementation of the algorithm. Although SFFCM is
very good for color image segmentation, it requires a manual
setting of the number of clusters. From the affiliation perspective,
atriangular inequality-based membership scale FCM (MSFCM)
is proposed [29], which effectively improves the convergence
speed and maintains the accuracy of data clustering.

To address the FCM problems of center points selection, the
number of clusters, and the distance metric, researchers have
explored new fuzzy frameworks. For example, in KWFLICM,
they argued that one of the main reasons for the nonrobustness of
FCM is the use of nonrobust Euclidean distance. Therefore, they
proposed a non-Euclidean distance measure based on a kernel
method to accomplish clustering. Lei Tao et al. [4] proposed a
new automatic fuzzy clustering framework (AFCF) to further
solve two problems. One employs density peak clustering to
adaptively determine the number of clusters. The other uses co-
variance analysis and Markov random fields to measure the sim-
ilarity between different superpixel regions instead of Euclidean
distance. Fang et al. [30] presented a new active contour image
segmentation model based on global and local fuzzy image fit-
ting (FRAGL). They designed two fitted images: a global fuzzy
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fitted image and a local fuzzy fitted image. The blurring theory
is introduced into the active contour model to make it more
robust to image segmentation with noise, boundary-blurring,
and intensity inhomogeneity. Moreover, they provided a hybrid
energy-driven active contour segmentation method (HLFRA)
based on the edges of blurred regions for image segmentation
with high noise and intensity inhomogeneity [31]. These pa-
pers mentioned previously are new fuzzy theory-based image
segmentation methods.

To solve the abovementioned problems, we propose an im-
age segmentation algorithm based on fuzzy low-rank structure
clustering (FLRSC). Its structure consists of two main parts;
the first part is the preprocessing part. We perform superpixel
preprocessing on the image before clustering to transform the
pixel-level features into region-level features. Its role is to im-
prove the speed of subsequent processing and reduce the com-
putational complexity and incorporate anisotropy to enhance its
noise immunity and edge preservation. The second part is a new
fuzzy clustering framework that combines fuzzy theory with the
low-rank structure to obtain different clusters by minimizing the
rank structure for image segmentation. Through experiments,
the effectiveness of the proposed algorithm in denoising and
image segmentation has been demonstrated. Its main contribu-
tions are as follows.

1) We improve the edge detection-based superpixel algo-
rithm, which preserves rich edge details and good noise
immunity performance.

2) The image segmentation algorithm based on fuzzy low-
rank clustering is a clustering method that does not need
to set the center points, the number of clusters, and
the distance metric, similar to the evolving clustering
method [32], [33]. It has fewer parameters to optimize.

3) We propose a new framework for image segmentation that
combines low-rank structure and fuzzy theory to obtain
optimal solutions by an iterative weighting algorithm and
demonstrate its convergence with better results in image
segmentation applications.

The rest of this article is organized as follows. In Section II,
we illustrate the motivations of this work. In Section III, we
propose our methodology and analyze its superiority. The ex-
perimental results on synthetic and natural images are described
in Section IV. Finally, Section V concludes this article.

II. RELATED WORK

In this section, we focus on the related algorithms by which
our algorithm is motivated, mainly including three aspects of
algorithms: first, the superpixel algorithm, second, the fuzzy
clustering algorithm, and third, the low-rank matrix representa-
tion.

A. Motivation for Using Superpixel

Superpixels refer to pixel blocks with certain visual signifi-
cance composed of adjacent pixels with similar texture, color,
brightness, and other features. They employ the similarity of fea-
tures between pixels to group pixels and replaces a large number
of pixels with a small number of superpixels to express image
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features, which greatly reduces the complexity of subsequent
image processing, so it is usually used as a preprocessing step
in segmentation algorithms. This step has been widely used in
computer vision applications, such as image segmentation, pose
estimation, object tracking, and object recognition. Several com-
mon superpixel segmentation methods include: mean-shift [34],
SLIC [23], DBSCAN [24], LSC [25], GMMSP [26], HS [27],
and MMGR-WT [28].

These algorithms have their advantages and disadvantages.
For example, the mean-shift algorithm has good noise immunity
and edge fit. However, it has three parameters to which it is sensi-
tive and remains susceptible to their effects. Although the SLIC
algorithm has fast processing speed, uniform superpixel size,
and good tightness, the results of subsequent region merging
are not satisfactory. The DBSCAN algorithm can be adaptively
clustered and can effectively handle noisy points, but it is sen-
sitive to the uniformity of data density. LSC combines local
features with a globally optimized objective function to produce
more reasonable superpixels. GMMSP generates superpixels
from the Gaussian distribution of pixels. MMGR-WT is based
on multiscale morphological gradient reconstruction images, but
different results are obtained from different edge images.

We found that the MR algorithm [35] is an excellent choice
for superpixel generation. The adaptive morphological recon-
struction (AMR) algorithm in [36] gives us great inspiration. It
is defined as follows:

w(g, S, m) = ngigm {Rﬁ(f)bz} (1)

where Rf (f) is the compositional morphological closing recon-
struction, and ¢ denotes closing reconstruction. b; is the nested
structural element, where 7 is the scale parameter of the structural
element,and 1 <s<i<m,s,me€NT,i=s5+1,...,m.
g is a gradient image, f = £, (g) denotes its morphological
expansion reconstruction from f to g, and f < g.

AMR can provide different segmentation results by changing
the parameter s. We can determine that when the value of s is
small, the number of clusters is large, the segmentation area is
small, and vice versa. However, although increasing the value of
s can reduce the number of regions, the accuracy of segmenting
regions will decrease. Although setting the parameter s achieves
a good segmentation result in the noise-free image, it is sensitive
to noise, and the effect is less satisfactory.

B. FCM Clustering

Given an image X = x1,22,...%;, ..., Ty, T; € R,, can be
viewed as a dataset in an n-dimensional vector space. n is the
number of feature vectors (the number of pixels in the image)
and c is the number of clusters (2 < ¢ < N). Then the objective
function of FCM is defined as follows:

Tn(U,V) =3 ufilla; —vi)? 2

i=1 j=1

where U = {uzl} is the fuzzy membership of z; with respect to
the clustering center V' = {v;}, 0 <w;; <1,and Y 7 | ui; =
1. m is the fuzzification index of matrix U. || - || denotes the
Euclidean norm. The FCM uses an alternative optimization (AO)
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scheme [37] to obtain the optimal U and V'
Ut = argmUin I (U, V) 3)
Vi = arg mvin I (UL, V) 4)

where ¢ is the number of iterations, and FCM usually initializes
U? or V9 randomly and then updates U and V until convergence.
Finally, a cluster image is formed centered on V' to complete
image segmentation.

C. Low-Rank Representation (LRR)

In recent years, the subspace clustering algorithm based on
LRR [38], [39], [40], [41], [42] has become a prevalent method
for data clustering. It takes advantage of the low-rank property
of data self-representation to establish the affinity matrix, which
can ensure that data belonging to the same subspace can be
represented linearly with each other. Moreover, from the global
structure of the dataset, LRR can establish the objective function
by matrix rank minimization. However, matrix rank minimiza-
tion is challenging to solve. Therefore, researchers usually adopt
norm minimization to approximate rank minimization.

In [43], the formulation of the LRR problem is

mZin rank(Z) st X = AZ. Q)
The optimal solution Z of the abovementioned problem is called
the LRR of the data X with respect to the dictionary A. The
abovementioned optimization problem is difficult to solve, and
its solution may not be unique. Therefore, many norm functions
are employed to replace low-rank functions, which are trans-
formed into a convex optimization problem [44], [45], [46], [47].

III. METHODOLOGY

In this section, we begin with a description of how we con-
struct a fuzzy low-rank structure that overcomes the inherent
drawbacks of the FCM algorithm and approximation of the rank
minimization problem. First, we improve the superpixel method,
which improves the noise immunity performance and reduces
the complexity of the rank minimization calculation. Second, we
combine the low-rank structure with fuzzy theory. The clustering
does not depend on the selection of center points and the number
of clusters. Moreover, we provide a new method to solve the rank
minimization problem.

A. Superpixel Based on Improved AMR

In computer vision, superpixels are increasingly used in the
preprocessing stage of image processing. The main reason is
that the application of superpixels can effectively reduce the
redundancy of local information in an image, making image
processing much less complex. Moreover, individual image
pixel does not have any practical significance, and only when
combined into different regions can they convey the information
they carry to people.

In [28], the effectiveness of the MR superpixel algorithm
for subsequent image processing has been demonstrated. It
improves the speed of image processing and incorporates the
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Fig. 1.
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Fig. 2.

Comparison of AMR algorithm and improved AMR algorithm. (a) Original image “118035.” (b) Superpixels generated by the AMR algorithm (the

number of superpixel is 92). (c) Superpixels generated by the improved AMR algorithm (the number of superpixel is 71).

local information of image pixels since superpixels are small
regions composed of pixel points whose positions are adja-
cent and have similar features, such as color, luminance, and
texture. However, MR-based superpixels depend on their gra-
dient images because the accuracy of their edges determines
the subsequent segmentation results. Moreover, the detection
of edges is sensitive to noise. Therefore, to enhance the noise
immunity, we improve AMR by adding anisotropy [48] enhance
its edge-holding capability, and then (1) becomes

(g, 5,m) = Vecicm { RS (F)bi } (6)

where F' = div{d(||Vf]|- Vf)}, and V is gradient operator.
d(||Vf]l - Vf) is the diffusion function that controls the degree
of diffusion, and its expression is

1

d([IVfl) = T AV

(N
where i is the scale parameter.

To demonstrate the effectiveness of the improved AMR al-
gorithm, Fig. 1 shows that our algorithm can effectively filter
out the noise and keep the edges smooth under noisy conditions
after adding anisotropy. Moreover, in Fig. 2, taking the image
“118035” in the BSDS500 database as an example, the original
image corresponds to Fig. 2(a), the result of AMR corresponds
to Fig. 2(b), and the result of the improved AMR corresponds
to Fig. 2(c). This effectively preserves edges, removes smaller
blocks of superpixels, and reduces the number of superpixels.
Since our purpose is to present an image segmentation algo-
rithm with denoising capability and speed, the improved AMR

algorithm is more suitable for our task requirements than other
superpixel algorithms.

B. Fuzzy Low-Rank Structural Clustering

The FCM-based image segmentation algorithm results are
limited by the selection of its center points and the number of
clusters, as well as the distance metric. To solve the abovemen-
tioned problems, we are required to get rid of the influence of
the original fuzzy structure and search for a new fuzzy frame-
work. Moreover, the low-rank subspace clustering algorithm
can establish the objective function by minimizing the rank of
the matrix and does not require the abovementioned settings.
Inspired by this, we present a new fuzzy low-rank structure that
combines fuzzy theory and low-rank structure to solve the inher-
ent problem of the FCM-based algorithm and the LRR problem.
Concretely, we obtain the membership relationship of each data
by extending the number of center points in the FCM algorithm
to consider each data as a center point. Then rank minimization
is employed to obtain the low-rank structure of the membership
matrix. In other words, we are not dealing with the data itself
but the relationship between the data. Moreover, to solve the
LRR problem, we add a fuzzy regularization term to increase
the association between data, making the approximation rank
minimization more desirable.

The proposed fuzzy low-rank structure clustering algorithm
includes two parts: one is the fuzzy data processing, which
clusters the associated data in a subspace. That is, the data
with similar membership are grouped. The other is image
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segmentation, which processes the optimized membership data
through the algorithm of [42] to discover the low-rank structure
information hidden in the initial data and ultimately completes
the clustering of the initial data, i.e., completes the image seg-
mentation.

1) Fuzzy Low-Rank Processing: The objective function of
the FCM algorithm is shown in (2), and the number of its clusters
cis fixed and predetermined, butitis not clear to us what s the op-
timum number of clusters to set for processing images. Although
the optimal clustering result can be obtained by an AO method,
a predetermined number of clusters may not be appropriate. In
our method, we assume that each pixel is the center of a cluster,
and then we optimize the clusters to a smaller number. Using
(5), a clustering of data from a global structure perspective is
achieved by removing redundancy through rank minimization.
Specifically, considering the extended membership matrix U as
the spatial relationship matrix and the new clustering center V' as
the conditional constraint, the objective function is as follows:

mUinrank(U) st. AU=V (8)

where A is a “dictionary” that linearly spans the data space.
Since the rank function is not convex and it is difficult to find
the optimal value, the optimization problem of (8) can be relaxed
to the following convex optimization problem:

m[}nHUHf st. AU =V 9)

where ||U7||? denotes the nuclear norm of /. However, this con-
vex relaxation formulation may not be the best approximation to
the original nonconvex problem (8), so we would like to use other
relaxations that can better approximate the original problem of
(8). By definition, the Schatten — p norm is a better relaxation
of the rank objective function than the nuclear norm when p < 1
[49]. Then the form of (8) can become

min U5, + 8- | AU = V|7 (10)

Although the constraint of the || AU — V||, term can ensure the
convergence of the abovementioned equation, the constraint is
not very strong, so it may not be able to effectively approximate
the rank minimization. To strengthen the constraint of (10), we
add a fuzzy regularization term ||U ||§7, which is essentially a
convex quadratic term, so that the model can be more robust and
more closely approximates the rank minimization to reach the
optimal solution. Also, to prevent the singularity of the gradient,
the smoothing regularization term p/ [47] is added, and our
objective function is

J(U) = min [|U; plfg, + - U5 + 8- |1AU - V|17
(11)
where o, 8, and p > 0, and I € R™*™ is the identity matrix.
To solve for the abovementioned solution, in the first step, tak-
ing the derivative of J(U) with respect to U, and |U; uI ||1§p =
Tr((UTU + 421)%) we have
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Algorithm 1: Algorithm to Solve Problem (15).

Data: membership matrix U, constraint matrix A, V/,
parameters « > 0,5 > 0,p > 1l,and 0 < p < 1.

1: Initialize: U;—q is the affinity matrix of A and V, ug > 0;

2:  while not converged do

3 Calculate Q; = p(UL'Uy + p21)5 1,

4. Calculate Q; + 28AT A + ol;

5: Calculate 28ATV — aUy;

6: Calculate p;41 = %;

7 Update Ut+1, Ht+15

8 Check the convergence conditions ||U;41 — U .

9: if ||Ut+1 — UtHoc < € then

10: break
11: end

12: t<—t+1;
13: end

8J(U) B 0 (TT (UTU + M2I)§)
ou ou
0 (a- U+ 5+ 14U - VI3
* ou

(12)
and set it to zero

p(UTU + 1203 'U + (2BAT A+ 201U — 28ATV = 0.
(13)
The detailed procedure for the derivation from (12) to (13)
is in Appendix A. The abovementioned nonlinear equation is a
fixed point equation that can be written as follows:

(p(UTU DB 1 2BAT A + aI) U

=28ATV — aU. (14)

To obtain the optimal solution, we define an iterative algo-
rithm as follows:

(Q: +2BAT A+ al) Upyy = 2BATV — ol (15)

where Q; = p(U/' Uy + p7 )2 ", ppyr = £, and p > 1, p is
the parameter that controls the descent of p. We obtain the
optimal solution by updating the iterative (15) until convergence.
According to the abovementioned discussion, the algorithm to
solve problem (15) is summarized in Algorithm 1.
To verify that (11) is convergent, we propose the following
Theorem 3.1.
Theorem 3.1: Given 0 < p < 1, U, is a sequence generated
by Algorithm 1, and it satisfies the following properties.
1) J(Uis1) < J(Uy), where the equality holds if and only if
Ut+1 = Ut.
2) limtﬁoc(Ut+l - Ut) =0.
3) If there exists a subspace matrix Uf,such that UF — U,
U satisfies the first-order differential optimality condition
Our proposed algorithm satisfies Theorem 3.1. Its detailed
proof procedure is provided in Appendix B. Therefore, our
algorithm has good convergence, showing that (11) can better
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Fig. 3.
fuzzy low-rank structure clustering.

approximate the rank minimization. Here, we obtain the mem-
bership matrix U, which results from global optimization.

2) Image Segmentation: Previously, the optimized member-
ship matrix U was obtained by the fuzzy processing algorithm.
Now, we face a new problem to exploit the membership rela-
tionship in the matrix U for image segmentation. In [43], we
found that the authors introduced a new rank constraint, which
consists of two steps to build the relationship matrix and spectral
clustering. This constraint allows their model to learn a subspace
indicator that captures the different clusters directly from the
data without postprocessing. Because it can discover low-rank
structural information hidden in the data without postprocessing,
it is well appropriate to handle our membership matrix U with
the following equation [43]:

2

min
G|k

i=1 ;—1

Zmin (so;(UG;),1)

k
st Gl €{0, 1} G =1

i=1

(16)

where 0;(UG;) represents the jth singular value of the matrix
UG,;. The k diagonal matrices G1,Ga, ..., Gy are defined to
represent the subspace matrix U;, and s > 0.

To solve problem (16), the authors employed an iteration-
based reweighting method instead of the KKT conditions since
the constraints are constant [43]. Therefore, problem (16) can
be transformed into the following problem:

min Tr(4;G;)
Gi‘§:1

k
st Gilis, €{0, 13> Gi=1 (17)
i=1

where A; = UTD;U,and D; = ((n — 1) + ¢, s0;)UAUT.
Based on the singular value decomposition, we can obtain
UG, =U > VT Here, n is the number of singular values g
(j =1,...,n) in matrix UG}, and the A; is a diagonal matrix
and its jth diagonal element is so, if so; < 1 or O otherwise.

(b)
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(©)

Example of the image segmentation process. (a) Original image “3063.” (b) Superpixels generated by the AMR algorithm. (c) Segmentation result after

Since G; |§=1 are all n by n diagonal matrices, then (17) can
be rewritten as

kK n

min Z Z GciJci

k
gcig{orl}r2i=1 gi=1 =1 c=1

(18)

where g.; is the cth diagonal element of matrix GG; and a.; is the
cth diagonal element of matrix A;. We can obtain the optimal
solution to (17) [43]

1<I<k
otherwise.

argmin; a (19)

Finally, the position of g.; = 1 with the row and column of
the membership matrix U is restored to the superpixel image
to complete the image segmentation. An example of the image
segmentation process is shown in Fig. 3.

IV. EXPERIMENTS

To demonstrate the effectiveness of our proposed FLRSC,
we evaluate its results on synthetic noisy images and color
images. Qualitative and quantitative comparisons with some
state-of-the-art methods are also provided, and experimental
discussions and analyses are performed. The following two
main effects of FLRSC are verified in the experiments: 1) the
ability to denoise images with synthetic noise; 2) feasibility and
robustness are tested on images from the Berkeley segmentation
dataset (BSDS500) [50].

There are 16 algorithms for comparison: FCM [51], FCM_S1
[14], FCM_S2 [14], EnFCM [21], FGFCM [22], FLICM [11],
KWEFLICM [16], FRFCM [10], DSFCM [15], FALRCM [19],
FCM_SICM [20], SFFCM [28], RSSFCA [52], FRAGL [30],
HLFRA [31], and AFCF [4]. These are all algorithms based on
fuzzy theory for solving image segmentation problems.

A. Parameters Setting

The parameter settings in these comparison algorithms follow
the corresponding original papers except for some general pa-
rameter settings, which we set uniformly for a fair comparison.
For example, the FCM-based comparison algorithm requires
three indispensable parameters: the weighting exponent, the
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minimum error threshold, and the maximum number of itera-
tions. Moreover, in our experiments, the values of these param-
eters are 2, 10~%, and 100, respectively. In addition, the number
of clusters is set to 3 and the neighborhood window size is set to
3 x 3. For FCM _ S1, FCM _ S2, and EnFCM, « is the control
parameter associated with local denoising and is generally set
to o = 3.8. The spatial scale factor and the gray-level scale
factor are A, = 3 and A, = 5 for FGFCM. Moreover, there
is no other setting for FLICM, KWFLICM [24], or DSFCM
except for the three essential parameters and the number of
clusters. In FRFCM, the structural element size and the filter
window are both set to 3 x 3. RSSFCA requires a regularization
parameter v = 0.2. For SFFCM and AFCEF, their preprocessing
algorithm MMGR-WT has two parameters, which are r; = 2
and i = 1074, respectively. For FALRCM, the control factor
k = 50 and the KL divergence constraint yx. = 0.15. In FCM
_ SICM, the parameters related to the bilateral filter are set to
o4 = 1and o, = 7. While FRAGL and HLFRA, the parameter
settings are the same as the original article. The structure of
FLRSC is different from FCM, so it does not have the three
required parameter settings. Its superpixel parameters are the
same except that the minimum structural scale s is set differently
from AMR. The parameter s can control the size of the super-
pixel region, which we set to 1 to retain more details. Moreover,
the smoothing term parameter p, the fuzzy regularization term
parameter «, and the constraint term parameter 5 must be greater
than zero to ensure convergence. From the iterative (15), it can
be noticed that the values of « should not be too large, while
£ should not be too small in general. Otherwise, it will cause
the problem of nonconvergence. Based on experience, we set
« = 0.2 and 8 = 1. The parameters ;. and p are set as in [47],
o = 0.1]|U]|2 and p = 1.1. Furthermore, the value of p should
not be too small because too small may not converge to the
optimal solution in the experiment. Thus, we set p = 0.8. All
experiments are performed on a PC workstation with a 3.6 GHz
CPU and 8 GB RAM using MATLAB 2019a.

B. Results on Synthetic Images

To demonstrate the robust denoising ability of our proposed
FLRSC, three synthetic images of size 256*256 are employed
in the experiment. They are multichannel color images with
different shapes, corrupted by Gaussian noise (G), salt and
pepper noise (SP), and mixed noise, as shown in Figs. 4, 5,
and 6, respectively. We evaluate the performance of FLRSC
and the comparison method using the segmentation accuracy
(SA), defined as the sum of correctly classified pixels divided
by the total number of pixels, and the quantitative index score
(S), representing the degree of equality between the pixel set Ay
and ground truth C'. They are calculated as follows:

i AN Cy
5= (20)
P A UC
sa=S AxNC @1
=21 G
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Fig. 4. Comparison of segmentation results on the first symmetric image.
(a) Original image. (b) First noisy synthetic image (Gaussian noise, the noise
level is 15%). (¢) FCM_S1. (d) FCM_S2. (e) EnFCM. (f) FGFCM. (g) FLICM.
(h) KWFLICM. (i) FRFCM. (j) DSFCM. (k) FALRCM. (1) FCM_SICM.
(m) SFFCM. (n) RSSFCA. (o) FRAGL. (p) HLFRA. (q) AFCEF. (r) FLRSC.

Fig. 5. Comparison of segmentation results on the second symmetric im-
age. (a) Original image (b) Second noisy synthetic image (salt and pepper
noise, the noise level is 30%). (c) FCM_S1. (d) FCM_S2. (e) EnFCM. (f)
FGFCM. (g) FLICM. (h) KWFLICM. (i) FRFCM. (j) DSFCM. (k) FALRCM.
(1) FCM_SICM. (m) SFFCM. (n) RSSFCA. (0) FRAGL. (p) HLFRA. (q) AFCFE.
(r) FLRSC.

Fig. 6. Comparison of segmentation results on the third symmetric image.
(a) Original image (b) Third noisy synthetic image (the mixed noise, the
noise level is G 10% and SP 20%). (¢) FCM_S1. (d) FCM_S2. (e¢) EnFCM.
(f) FGFCM. (g) FLICM. (h) KWFLICM. (i) FRFCM. (j) DSFCM. (k) FALRCM.
(1) FCM_SICM. (m) SFFCM. (n) RSSFCA. (o) FRAGL. (p) HLFRA. (q) AFCE.
(r) FLRSC.

where m is the number of classes, Ay, represents the set of pixels
falling into the kth class in the result, and C}, denotes the set
of pixels belonging to the class in the ground truth. Moreover,
Tables I and II present the average SA and S values of the
proposed algorithm and the comparison algorithms, which are
the average results of 100 replicate experiments.

In Figs. 4, 5, and 6, the segmentation results of FCM_SI1,
FCM_S2, EnFCM, FGFCM, and FLICM exhibit poor per-
formance and are sensitive to Gaussian noise, SP, and their
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TABLE I
SEGMENTATION ACCURACIES (SA%) OF 16 ALGORITHMS ON THE FIRST SYNTHETIC IMAGE CORRUPTED BY NOISE, WHERE SP REPRESENTS SALT & PEPPER
NOISE AND G REPRESENTS GAUSSIAN NOISE

Methods G 5% G 10% G 20% SP 10% SP 20% SP 30% SP 10% + G 5%  SP20% + G 10%  SP 30%+ G 20%
FCM_S1 90.69 85.31 76.38 88.77 80.68 69.37 87.18 69.30 58.91
FCM_S2 9145 84.72 77.58 98.57 93.61 85.92 88.65 81.32 72.52
EnFCM 89.65 87.68 70.47 86.35 88.59 81.26 88.24 72.20 54.30
FGFCM 95.04 86.54 68.63 95.36 87.22 81.45 91.05 88.41 76.01
FLICM 97.34 90.46 83.87 92.85 85.59 83.84 86.35 85.69 65.12
KWFLICM 98.13 93.16 80.79 99.60 98.44 97.91 97.80 91.26 77.51
FRFCM 99.22 92.53 79.46 99.84 99.01 97.54 99.18 97.43 80.23
DSFCM 99.12 96.78 88.67 99.82 99.36 96.35 99.66 92.79 68.92
FALRCM 99.41 95.70 92.15 87.47 88.21 80.55 99.56 98.80 96.55
FCM_SICM 99.65 98.52 96.39 99.65 98.48 98.12 99.84 99.35 97.73
SFFCM 98.23 97.00 81.65 99.79 98.61 97.83 99.55 96.17 94.00
RSSFCA 97.96 96.21 89.44 99.56 96.42 95.28 99.25 96.73 77.77
FRAGL 55.60 53.14 50.60 52.88 51.63 48.76 78.09 73.59 62.18
HLFRA 67.77 60.93 55.38 78.84 65.26 59.68 90.99 78.85 44.69
AFCF 99.45 96.34 88.98 99.06 97.75 89.56 99.58 97.15 80.39
FLRSC 99.70 98.06 97.19 99.81 99.80 99.32 99.77 99.62 98.16
The best values are highlighted.
TABLE 1T

SCORES (S%) OF 16 ALGORITHMS ON THE SECOND SYNTHETIC IMAGE CORRUPTED BY NOISE, WHERE SP REPRESENTS SALT & PEPPER NOISE AND G
REPRESENTS GAUSSIAN NOISE

Methods G 5% G 10% G 20% SP 10% SP 20% SP 30% SP 10% + G 5%  SP20% + G 10%  SP 30%+ G 20%
FCM_S1 79.40 56.43 45.24 81.66 69.79 49.73 69.23 47.85 39.28
FCM_S2 73.98 51.56 44.62 92.30 82.97 73.06 64.24 62.86 52.25
EnFCM 71.28 68.38 57.19 68.16 48.18 42.08 67.78 59.79 37.64
FGFCM 89.62 72.01 57.74 84.48 69.74 52.23 69.06 60.72 39.24
FLICM 88.82 66.17 59.69 82.54 55.72 46.50 73.56 52.06 47.73
KWFLICM 93.43 86.54 67.93 99.26 99.04 98.44 89.22 71.69 46.96
FRFCM 99.58 96.55 91.03 99.25 99.10 91.57 97.52 85.68 80.42
DSFCM 99.64 95.14 92.15 99.39 99.04 98.44 99.11 92.19 77.78
FALRCM 99.65 99.35 96.17 98.10 99.12 98.02 99.64 98.38 94.62
FCM_SICM 99.80 99.08 98.63 99.67 99.15 99.01 99.59 99.07 98.61
SFFCM 99.08 87.33 81.67 98.93 97.90 94.63 98.96 98.03 84.50
RSSFCA 88.71 69.34 57.71 99.62 98.25 92.52 99.21 76.28 70.22
FRAGL 47.75 44.33 42.98 47.77 47.80 47.68 47.33 46.36 34.54
HLFRA 47.87 52.16 45.39 47.85 47.36 39.82 47.82 47.42 29.27
AFCF 99.10 98.76 80.50 97.32 90.56 8113 97.60 96.11 79.40
FLRSC 99.92 99.36 98.96 99.31 99.30 99.14 99.79 99.07 96.37

The best values are highlighted.

mixtures. As shown in Table I, FCM_S1 uses a mean filter
to process local spatial information. Although it will affect the
low-level noise, the denoising ability will worsen as the noise
intensity increases. FCM_S2 is more effective for SP noise
than Gaussian noise due to its use of median filters. FLICM
introduces parameter-free local information to improve noise
immunity. Then, KWFLICM adds a kernel metric to overcome
some shortcomings of FLICM in identifying class boundary
pixels and preserving image details. Therefore, its SA and S
values are better than those of the FLICM, as seen in Table II.
Compared to previous algorithms, EnFCM only uses histograms
to reduce computational complexity without considering the
denoising problem, resulting in poor noisy image segmentation
performance. Furthermore, the FGFCM algorithm outperforms
EnFCM because it introduces a new factor as a local (spatial
and grayscale) similarity metric for noise immunity and detail
preservation.

Furthermore, Figs. 4, 5, 6, Tables I, and II show that FRFCM,
DSFCM, FALRCM, FCM SICM, SFFCM, RSSFCA, and AFCF
can achieve better segmentation performance in the presence
of noise interference. FRFCM is based on MR and member
filtering, which solves the computational complexity problem
and improves noise immunity performance. In addition, DSFCM
imposes a sparse constraint on the deviation between measured
and theoretical values, making it easier to identify noise or
outliers. As shown in Tables I and II, the values of SA and
S of FALRCM do not linearly decrease with increasing noise

intensity. However, their denoising effect performs better in a
specific noise interval, which we analyzed as being related to
the KL information of its local median affiliation. Some of
the FCM_SICM metrics are best at one noise level. We can
deduce that this is due to its algorithm design for noise image
segmentation, which employs a fast bilateral filtering method
to obtain local spatial and intensity information. SFFCM can
effectively remove Gaussian and SP noise by using adaptive and
irregular local spatial neighborhood information. RSSFCA can
remove noise by incorporating the Gaussian metric under reg-
ularization into the objective function. Moreover, AFCF shows
that the superpixel technique and prior entropy can significantly
improve SA in noisy images. While FRAGL and HLFRA are
active contour-based image segmentation algorithms driven by
global and local blur information and blurred region energy,
respectively, their effects on noisy synthetic images are unsat-
isfactory, and the edge information is easily lost. Compared to
the abovementioned algorithms, the proposed FLRSC algorithm
can effectively filter the noise at the edges and preserve the edges
well, demonstrating the effectiveness of FLRSC for noisy image
segmentation.

C. Results on Color Images

To demonstrate the effectiveness and superiority of the pro-
posed FLRSC algorithm for image segmentation, we tested and
verified it on the BSDS500 database. Moreover, the parameters
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TABLE III
PERFORMANCE COMPARISON OF DIFFERENT ALGORITHMS ON THE BSDS500
DATASET
Methods PRI 1 VoI | GCE | BDE |
FCM 0.69 2.93 0.38 14.47
FCM_S1 0.70 2.87 0.37 14.30
FCM_S2 0.69 2.86 0.36 14.42
EnFCM 0.71 2.90 0.39 14.65
FGFCM 0.69 2.85 0.36 14.24
FLICM 0.70 2.82 0.36 14.12
KWFLICM 0.72 2.80 0.35 14.27
FRFCM 0.73 2.60 0.30 13.98
DSFCM 0.70 2.82 0.36 14.63
FALRCM 0.71 2.62 0.32 14.40
FCM_SICM 0.67 2.87 0.34 14.78
SFFCM 0.72 2.31 0.26 14.35
RSSFCA 0.73 2.28 0.28 14.46
FRAGL 0.66 2.57 0.29 14.23
HLFRA 0.65 2.55 0.27 14.21
AFCF 0.74 2.22 0.22 13.93
FLRSC 0.76 2.14 0.21 13.88

The best values are highlighted.

of the comparison algorithms follow the original paper, and the
number of clusters is set to 3 in the FCM-based algorithm for a
fair comparison.

In this article, we adopt four popular evaluation metric func-
tions, probabilistic rand index (PRI), variation of information
(Vol), global consistency error (GCE), and boundary displace-
ment error (BDE), to evaluate the segmentation results of the
proposed FLRSC and the comparison algorithms. They evaluate
the performance of segmentation results from different aspects,
making the evaluation more accurate. Among them, PRI is the
ratio of the number of pixels that overlap the result of the image
segmentation algorithm and ground truth to the whole number
of pixels. VoI defines the distance between the segmentation
result of an image segmentation algorithm and the ground truth
as the average conditional entropy. Moreover, it can measure
the degree of randomness in the segmentation results that the
ground truth cannot cover. GCE measures the degree to which
the result of the image segmentation algorithm is consistent
with the ground truth. BDE calculates the average displacement
error between the result of the image segmentation algorithm
and the boundary pixels in the ground truth. The larger the
PRI value and the smaller the VoI, GCE, and BDE values in
the quantitative results, the closer the segmentation results are
to the ground truth, indicating the superior performance of the
proposed algorithm.

In Figs. 7 and 8, some examples of image segmentation, con-
taining simple backgrounds, complex backgrounds, scenes with
similar objects and backgrounds, etc., are shown to demonstrate
the effectiveness of the proposed FLRSC algorithm for image
segmentation. Moreover, the superiority of FLRSC is intuitively
reflected by the values of the four evaluation metrics in Table III.
It can be seen that FCM, FCM_S1, and FCM_S2, have similar
PRI, VI, GCE, and BDE values in Table III. Moreover, the main
difference between them is that FCM_S1 and FCM_S2 add
mean and median filters, respectively, which can reduce some
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Fig. 7.
images of BSDS500 using 17 algorithms.

Visual comparison of segmentation results on relatively simple scene

noise. However, there is no significant improvement in image
segmentation, as shown in Figs. 7 and 8. Although EnFCM can
speed up the image processing, the cost is that its GCE and BDE
values perform worse than FCM. Then FGFCM introduces a
local similarity measure based on EnFCM, which improves the
value of each evaluation metric. FLICM and KWFLICM intro-
duce local information, making the image clustering effect better
than before. Furthermore, as shown in Table III, not only are their
four evaluation metrics improved, but their denoising effect is
superior to previous work. The PRI and BDE values of FRFCM
are inferior to those of AFCF and FLRSC, which also shows
that preprocessing the image is efficient for fuzzy clustering.

DSFCM, RSSFCA, FCM_SICM, FALRCM, and HLFRA add
regularization or other information constraints to FCM. How-
ever, the four metric values of FCM_SICM perform poorly,
while its denoising performance is just second to the FLRSC,
indicating its suitability for noisy image processing. In contrast,
DSFCM and RSSFCA obtain better segmentation results by
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Fig.8. Visual comparison of segmentation results on relatively complex scene
images of BSDS500 using 17 algorithms.

using sparse regularization and self-sparse Gaussian regular-
ization, respectively. FRAGL and HLFRA are active contour
models with fuzzy information that obtain binary segmentation
images, as shown in Figs. 7 and 8. Therefore, their PRI values are
significantly lower than those of other algorithms. The metrics of
SFFCM and AFCF perform relatively well, and their denoising
effects are also superior. It demonstrates that the superpixel pre-
processing of the image can reduce the subsequent computations
and noise interference, which results in a promising segmenta-
tion result. The proposed FLRSC outperforms the comparison
algorithms in all four evaluation metrics, demonstrating that
FLRSC can effectively obtain better image segmentation results
for color images.

D. Complexity Analysis

The computational complexity of an algorithm is also a
valuable metric for assessing its performance. Table IV shows
the computational complexity of the proposed FLRSC and the

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 31, NO. 7, JULY 2023

TABLE IV
COMPUTATIONAL COMPLEXITY OF DIFFERENT ALGORITHMS

Methods Computational complexity

FCM O(N x cxt)

FCM_S1 O(N x w? + N x ¢ x t)
FCM_S2 O(N x w? + N x ¢ x t)
EnFCM O(N x w? +gxcxt)
FGFCM O(N x w? +gxcxt)
FLICM O(N x w? x ¢ x t)
KWFLICM O(Nx (w+1)2+ N xw?xcxt)
FRECM O(N x w? +qxcxt)
DSFCM O(N x w? x ¢ x t)
FALRCM O(N x (w?4+3)+ N xw? xcxt)
FCM_SICM  O(N x g x log(N x q) + 2N x w? + N x ¢ x t)
SFFCM O(N xT'+ N’ x cxt)
RSSFCA O(N x (M(C)+4c¢)xt+ N xecxt)
FRAGL O(N?% x w? x t+ N2 x t)
HLFRA O(2N? x w x t+ N2 x t)
AFCF ONXT' +N' Xxcxtx?2)
FLRSC O(NXT'+N"?xt+ N3 xt)

competing methods. N is the number of image pixels, ¢ denotes
the number of clusters, and ¢ indicates the number of iterations. w
represents the filter window’s size, and ¢ is the image’s grayscale
value. N’ is the number of superpixels significantly less than IV,
T is the number of iterations less than ¢, and O(M(c)) is the
computational complexity of Newton’s method.

Compared to other algorithms, the FILICM, KWFLICM,
and DSFCM have relatively high computational complexity,
which means that they have to compute the information for
each neighborhood. Similarly, the FALRCM algorithm increases
the computational complexity due to the addition of KL in-
formation and region-level information. To reduce the com-
putational complexity, FCM_S1 and FCM_S2 use filters in-
stead of neighborhood spatial information, and EnFCM and
FGFCM employ the grayscale histogram technique to replace
the computation for each pixel, thus increasing the computa-
tional speed. Moreover, FRFCM is very fast because it removes
the repeated distance calculation between pixels and clustering
centers in the neighborhood window. Although the FCM_SICM
expression appears to be complicated, its computation speed is
not correspondingly slow because it has no local information
calculation. However, the computational workload of RSSFCA
goes up because the Newton algorithm is used in the iterative
process. FRAGL and HLFRA are active contour segmentation
methods incorporating local and other information. Therefore,
there is no doubt that they are time-consuming methods. In
contrast, the SFFCM and AFCF algorithms are faster because
they employ superpixel preprocessing, which reduces the quan-
tity of data. As seen from Table IV, the computational speed
of the proposed FLRSC depends on the number of super-
pixels NN: the fewer the superpixels, the more efficient the
computation—however, the fewer the superpixels, the lower
the SA.
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V. CONCLUSION

In this article, we explore a new fuzzy clustering algorithm
that does not require center point selection, the number of
clusters, or the distance metric. Moreover, we propose a new
framework for image segmentation based on fuzzy low-rank
structure clustering, which combines low-rank structure and
fuzzy theory to achieve image segmentation. The proposed
FLRSC has two main contributions. One is that the objective
function can be established by minimizing the rank of the
membership matrix, thus replacing the classical form of the
FCM function. Furthermore, it is concerned with membership
data relative to the data rather than the data itself. The other
contribution is building the objective function with a fuzzy
regularization term to guarantee robustness and convergence,
and then, a smoothing regularization term is added to prevent
the gradient from becoming singular. We also demonstrate its
convergence and solve its optimal solution with a weighted
iterative algorithm. In addition, the improved superpixel gener-
ation algorithm has good noise immunity for superpixel image
preprocessing. The experiments on synthetic and color images
demonstrate the excellence and robustness of the proposed
FLRSC.

The running speed and SA of our algorithm depend on
the superpixel processing of the image, which is a limitation
for fuzzy low-rank structure processing. In future, we will
consider deep learning algorithms to extract image superpixel
features and explore new ways of combining fuzzy theory and
LRR.

APPENDIX A
DERIVATION PROCESS OF (12)—(13)

The right term of (12) can be written as
o(Tr (UTU +21)*)
ou
+a@ww%)
ou
L 28 14U - V)
ou

According to the derivative rule of the matrix, its first term
becomes

=0. (22)

o(Tr ((UTU +p21)*)
ou

P 51
~ (WU +irnt

o(Tr (UTV)
——r @

. T
Then, in the next step, we need to solve for w. By

the differential rule of matrices and the properties of traces [53],
we have

d(Tr (UTU)) =Tr (d (UTD))
Tr (dUT)U)+Tr (UTdU)

Tr (@) U) + Tr (U7 dU)
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=Tr (U@U)") +Tr (UTdU)
=Tr (U"dU) +Tr (U"dU)
=2Tr (UTdU). (24)
Since df (U) = Tr(agT(TU)dU), we derive
oTr(UTU)
——g = 2U (25)
Therefore
a(rr ((UTU + u21)® .
( (( o ) ) = p((UTU + p*1)° " U, (26)

Both the second and third terms are derivations with respect
to the F-norm, and

U7 = Tr (UTU) (27)
|AU = V|[7 = Tr (AU = V)" (AU = V))  (28)
we have
2
e WIE) _ o TrU™Y) oy )
and
o (8- 14U -V}
ou
a(8-Tr ((AU )T (AU - V)>
U
=283 (ATAU — A™V) (30)

so the (12) is converted to (13)

p (UTU + 121) % U + (2BAT A + 2a1) U — 28ATV = 0.

3D
APPENDIX B
PROOF OF THEOREM 3.1
Proof: (1) First, we define an auxiliary function
fly) =" +2%)7 - (1" +y°)7
21
—py (W +2%)* (z—y). (32)

Then, we have

flz,y) = [ (p2® — 2pxy + py°) + (20 + (2 — p)a®

py? — 2 (M2 +x2)1—% 9 (H2 +y2)%)}

-1

[SI§S]

(1 + %) (33)
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Since for any nonnegative constants a, b, and ¢ € (0, 1), we
have a'"Yb* < (1 — t)a + tb, where the equality holds if and
only if a = b. Therefore, the second term in the abovemen-
tioned equation is nonnegative and the first term, f(z,y) =0
when & = y, is a nonnegative complete square term. Moreover,
f(x,y) > plz —y)? - (u? + %)%, which is used to demon-
strate the second term.

Let

J(Ut) = J (Ua)

= Tr (U U, + p21) 2 = Tr (UL Ussy + p21)

+ 8- (AU = VI3 = | AU = VI3

+a- (|07 = 10l

b b
2 2

=Tr (Ul U+ p21)* = Tr (Ul Upgr + p*1)
+ 8- Tr( (AU, — V)" (AU, — V)
— (AU = V) (AU = V)
+oa-Tr (USU, — UL Upg)

P P
2 2

=Tr (U/Up+ p21)? = Tr (UL Upr + 1°1)
+ 8- Tr((AU)" (AU,) — (AU)T V = VT (AUy)
— (AU1)" (AUpj1) + (AU) "V + VT (AU))
+oa-Tr (UfU, — Ul Upss)
= Tr (UL, + p21)* = Tr (UL, Upir + p21)*
+ B+ [IIAU, = AU I3 + Tr((AU) " (AU 1)
+ (AUs1)" (AUY) = 2 (AU 11)" (AULp)
— (AU)TV = VT (AU) = (AU11)" (AULp)
+ (AU) "V + VT (AU))]
+a-Tr (UFU — UL Usgr) - (34)

Considering the properties of the matrix trace, the abovemen-
tioned expression can be written as

J (Ut) = J (Uty1)
= Tr (U U, + p21) 2 = Tr (UF Uy + 20)*
—Tr((2BA"V —2BAT AU 11 — aUy — aUyy1)
Uy = Upy1) ) + B - [|[AU; — AU 11 |7
By the (15) and (32), we obtain
J(Ut) = J (Uts1)

(35)

= Tr (UTU, + 121) % — Tr (UL Upir + 21) %
—Tr(Q¢ (Uy — Ups1)) + B+ | AU, — AUpi1 |7

= Tr((UFU, + p21)* — (UL, Upyr + p21)*
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— QU1 (U — Ut+1)) + 6 - ||AU; — AUt+1H%
=Tr (f (U, Ur)) + B - |AU, — AU | (36)

Now, itis known that f (U, Upy1) =0and ||AU; — AUyt HQF
only when U; = Uy 1, then (30) implies that J (Upyq) < J(Uy).

(2)By Q; = p(UL'U; + p21)2 " and J(Uyy1) < J(Uy), we
have

73 P \"2, 1 27\ 2
Q" = 23 (U U+ pI)2

We assume that (%)T%J(UO) = W, then Q; > WO% _
W1. Therefore,

f (U, Uppr) > p (U — Upyn)? - (Ut2 + N2[)§_1

(37

> Wip (Up — Up)? (38)
and
J(Us) = J (Ups1) =Tr (f (Ur, U41))
+ B | AU, — AU I
>Tr (Wlp (U — Ut+1)2)
+ B || AU, — AUl
>Tr (Wap (U = Uisn)*) . (39)
By summing these inequalities, we obtain
ST (Wip (U = Uia)?) < J (Uo) = J (Ursa)
i=0
< J(Up). (40)
Thus, we draw the conclusion that
lim (Ut - Ut+1) =0. (41)
t—00

(3) By the abovementioned properties (1) and (2), we have
0<JUps1) < J(Uy). 42)

Then it can be seen that J(U) is monotonically decreasing,
and the lower boundary is zero and the upper boundary is
J(Up). If there exists U} — U, then by the iterative algorithm,
Utk+1 will also converge to a matrix U*, and U = U™*.

Moreover

JU) = J(U*) = Tr(Wip(U — U*)?)
+ 8- ||AU — AU*||%. (43)

If we assume its limit is J, then J(U) = J(U*) = J. From
(36), it follows:
|AU — AU*||5. < J(U) — J(U*) = 0. (44)
Thus, we can obtain

AU -U*) =0. (45)
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Since

Tr (UTU + 121) % +a- U3 + AU — V|2

=Tr (U U +421) " + o U5 + AU =V}

(46)
we also further derive
P P
Tr (UTU +21)* = Tr () 0" +421)
= a-|lU |5 —a- U (47)
Considering the iterative relationship
(Q: +2BAT A+ al) Upyy = 2BATV — al,. (48)
When ¢ — oo, the abovementioned equation becomes
((Q¢ +2BATA+al) U*) = (2B4TV —al).  (49)

By multiplying (U — U*)T with both sides of (49), it becomes
(U= U" (Qr +2BAT A+ al) U*

= (U -U"" (2BATV - al). (50)
Thus, we have
Tr[(U—UT (Q: + 2847 A+ al) U*]
—Tr [(U — U7 (28ATV — aU)} . (51)

Obviously,
Tr[(U—U"TQ, + (U - U*)" (28ATA — 28ATV)

+(U-U"" (aU*+U)] =0. (52)
By the equality A(U — U*) = 0 and (36), we obtain
Tr(f(U,U") =0 (53)

which concludes U = U*. Therefore, when & — oo and Ut"' =
U, U satisfies the first-order differential optimality condition
2J(U) _

ou  — Y
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